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Abstract

An important step in the construction of molecules from individual atoms is merging

the optical tweezers containing the component atoms. In this report, we investigate

how this can be completed in the shortest possible time while minimising atomic

excitation and heating which would be detrimental to the association process. We

focus on the case where a 938 nm optical tweezer containing a single ground state

Cs atom is merged into a stationary 814 nm tweezer containing one ground state Rb

atom. The relationship between the Cs effective potential minimum position and

the location of the 938 nm tweezer is found and we use this to move this potential

minimum with different trajectories. We find that using this procedure enables us to

decrease the merging time by more than half whilst maintaining a > 99 % combined

probability that both atoms remain in their motional ground states. Furthermore,

we explore new ways to complete the merge using a Lewis-Riesenfeld invariant-based

inverse engineering method. This leads us to adjust the 938 nm tweezer beam power

during the merge and move the Cs potential minimum with a specific trajectory

which allows us to decrease the merge time by a further 20 %. These techniques can

be applied to other systems of optical tweezers utilising different atoms and will

likely lead to similar improvements in the merging time.
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Introduction
The creation and trapping of ultracold molecules is of great interest in number of different

areas of physics such as ultracold chemistry,1–3 fundamental physics,4,5 quantum comput-

ing6 and quantum simulation.7 This wide range of applications largely results from the

additional properties molecules possess over their atomic counterparts such as vibrational

and rotational degrees of freedom, anisotropic long-range interactions and, in the case of

hetero-nuclear molecules, permanent dipole moments.8,9

Unfortunately, whilst the rich internal structure of molecules opens up many applications

it makes cooling them using the traditional laser cooling techniques difficult.10,11 An al-

ternative to directly cooling high temperature molecules is to associate ultracold atoms

using photoassociation or by utilising a Feshbach resonance.1,12 After association, the res-

ultant molecules can be transferred to their rovibrational ground state using a stimulated

Raman adiabatic passage (STIRAP) procedure.13–15

Where individual molecules are to be created, highly focussed optical dipole traps (known

as optical tweezers) are often used to confine single atoms.1,16 The relatively high trap

frequencies that can be achieved within these traps enables the application of Raman

sideband cooling to cool atoms to their motional ground state.17,18 This improves the

efficiency of the magnetoassociation process between the atoms due to the large degree

of wave function overlap.19,20 Additionally, this provides a route for full quantum state

control of the resultant molecule since no kinetic energy is produced during association

processes utilising Feshbach resonances.12

Before association can occur, the separate optical tweezers containing the single atoms

must be merged. This process has been demonstrated by Liu et al. for tweezers containing

single Cs and Na atoms which were initially separated by 2.5 µm.13 By using an adapted

minimum jerk trajectory to complete the merging process in 7.6 ms, they experimentally

achieved a 61(4) % combined probability that both atoms remain in their ground states

after the merge.13

In this report we aim to establish methods which will allow this merging process to be

completed faster whilst maintaining a high ground state probability for both atoms. Hav-

ing the ability to complete fast adiabatic tweezer merging will become important when

implementing arrays of optical tweezers containing ultracold molecules.7 The construction

of such arrays will require sequentially merging many pairs of tweezers,21,22 thus minim-

ising the individual merge times is important to reduce the impact of the finite lifetimes

of the atoms when they occupy the same tweezer.

We will simulate the merging process between optical tweezers containing single Cs and

Rb in their motion ground state. We will first cover the general background relevant to

our investigation and outline the core features our simulations in chapters 1 and 2. In

chapter 3, we simulate the motion of a single tweezer containing just the Cs atom in order

to identify candidate trajectories for the merging process. We then consider methods to

optimise the merging process in chapter 4. Finally, we present a summary of our findings

and describe possible future research directions in chapter 5.
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Chapter 1

Background

1.1 Optical dipole traps
In order to exert precise control over single atoms, they should first be individually

trapped. For charged ions, trapping can be achieved utilising the Coulomb interaction,

however it is clear that a different approach is required to trap neutral atoms.

It is possible to trap neutral atoms by utilising their interactions with laser radiation

using optical dipole traps.23 These traps are less dependent on the atomic state of the

trapped atoms and can be used to create a greater number of different trapping geometries

compared to the earlier magnetic traps.24,25 Unfortunately, optical dipole traps have small

trap depths (. 1 mK)25 and are therefore usually loaded using magneto-optical traps

(MOTs).26 MOTs are commonly used as sources of cold and dense atomic gasses and

utilise both magnetic fields as well as optical radiation to achieve simultaneous trapping

and cooling.16,25,27

Recently, optical dipole traps have been constructed using highly focused Gaussian laser

beams to form optical tweezers.16,28 These permit the trapping of single atoms using the

methods described in appendix C. Additionally, optical tweezers provide the environment

necessary for the Raman sideband cooling of the atoms to their motional ground state

(see appendix A).

For the purposes of our investigation, we will assume that single Cs and Rb have already

been prepared in the motional ground state of two separate optical tweezers. In this section

we will briefly outline some of the theory relating to optical dipole traps which is directly

relevant to our investigation. We have considered the theory and methods relating to

atomic cooling and trapping in some detail in appendices A to C.

1.1.1 The dipole force

The interaction between a radiation field and a neutral atoms can be equivalently viewed

as either the result of a Lorentz force between the electromagnetic field and the induced

dipole moment of the atom or in terms of momentum conservation from the absorption

and emission processes of the atom in the field.29 The components of this force can be

split into two different types: the scattering force and the dipole force.29 The scattering

force results from the absorption of light by the atom and the subsequent spontaneous

emission and is responsible for Doppler cooling (refer to section A.1).30 In contrast, the

dipole force results from the interaction between the induced atomic dipole moment and

the optical field gradient and is related to stimulated emission processes.31 Optical dipole

traps, such as optical tweezers, utilise the dipole force to trap atoms.

A derivation illustrating how the dipole force arises from the induced-dipole interaction

for a two-level atom in a radiation field is presented in appendix B. Alternatively, the

interaction potential can be derived by modelling the atom as a simple harmonic oscillator
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in a classical radiation field. The dipole force then arises from the resultant conservative

potential as described by Grimm et al..25 This treatment gives the interaction potential

Udipole(r) = −α(ω)

2ε0c
I(r). (1.1.1)

Here I(r) is the intensity of the radiation field in the spatial coordinate r and α(ω) is the

real part of the complex, frequency dependent, ground state atomic polarisability with ω

the frequency of the radiation field.

Real atoms have more than two energy levels, thus eq. (1.1.1) is not strictly valid and we

should, in principle, use an expression dependent on the transition matrix elements for all

possible transitions.25 For ground state alkali atoms in red detuned traps, only the matrix

elements related to the ns→ np transitions, where n is the principle quantum number of

the valence electron, contribute significantly. This permits the exclusive consideration of

the transitions between the fine and hyperfine levels in the ns and np manifolds.

In many cases, the hyperfine splittings may be neglected since the frequency of the trap-

ping light is sufficiently detuned from the atomic transition frequency that these splitting

are not resolved.25,32 We will further neglect the fine splitting and use eq. (1.1.1) since

this produces sufficiently accurate results for our purposes.

1.1.2 Heating

The quantum nature of the scattering and dipole forces gives rise to force fluctuations

which result in a heating effect.29 In the scattering force, each absorbed photon is later

emitted in a random direction via spontaneous emission and will cause the atom to recoil

such that momentum is conserved, hence heating the atom.33 This process is the origin

of the Doppler cooling limit referred to in section A.1 of appendix A.

For the dipole force, the mean dipole force experienced by an atom is dependent on

the populations of the combined atom-radiation field states (the dressed states) of the

system. Transitions between the two different types of dressed state result in a reversal of

the direction of the instantaneous dipole force experienced by the atoms causing heating.34

The origin of this is explored in more detail in section B.2 within appendix B.

As we further discuss in section A.4, whilst we can counteract these heating processes using

cooling methods when the atoms are in their individual optical tweezers, this is no longer

possible after the tweezers have been merged. This leads to finite ground state lifetimes

for the Cs and Rb atoms in the merged tweezer. Additionally, if at least one atom is

not in the ground hyperfine state, then hyperfine-changing collisions may occur between

the atoms releasing energy and leading to the loss of both atoms.35,36 Although both

atoms will be initially prepared in their lowest hyperfine states (fCs, fRb) = (1, 3) where

hyperfine-changing collisions are forbidden, the atoms may be transferred into states where

hyperfine-changing collisions are possible via spontaneous Raman scattering.35

Whilst these processes occur on sufficiently long timescales that they have little effect when

creating a single molecule, however the eventual aim of our experiment is to assemble a

large number of molecules following a sequential merge process.20 Minimising the tweezer
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merging time will thus increase the probability that the atoms will still be in their ground

state when the association process is completed, thus maximising the number of molecules

which can be successfully created.

1.2 Fast adiabatic transport
Recently, there has been much interest in designing transport processes which are able

to transport atoms at the highest possible speed maximal speed while maintaining a

high transport fidelity.37,38 This has a number of uses fields such as quantum information

processing where systems may have a short coherence time39,40 and has prompted research

into finding the shortest possible route to transport an atom between two states.38

One of these techniques uses Lewis-Riesenfeld invariants to determine trajectories which

allow adiabatic transport of atoms at short times. We will apply this method (described

in section 1.2.1, below) to the merging of two optical tweezers for the first time. As

discussed in section 1.1.2, the resultant shorter merging times should permit longer studies

of molecules in optical tweezer arrays in the future.

1.2.1 Inverse engineering using Lewis-Riesenfeld invariants

In 1969, Lewis and Riesenfeld presented a method to use a Hermitian dynamical invariant

I(t) related to a known time-dependent Hamiltonian H(t) by

dI

dt
=
∂I

∂t
+
i

~
[H, I] = 0, (1.2.1)

to determine the eigenstates of the Hamiltonian in the far past and future where it is

assumed constant.41 This method can be reverse engineered to determine an appropriate

time-dependent Hamiltonian which will result in a given state evolution.37,42 This allows

the determination of trajectories which permit fast, near adiabatic transport through the

selection of appropriate initial and final states.

A one-dimensional, time-dependent Hamiltonian for a particle of mass m compatible with

an invariant quadratic in momentum takes the form H(t) = p(t)2

2m
+U(r, t) where42,43

U(r, t) = −F (t)r +
1

2
mω(t)2r2 +

1

ρ(t)2
V

(
r − β(t)

ρ(t)

)
. (1.2.2)

Here F (t), ω(t), ρ(t) and β(t) are arbitrary functions satisfying

ρ̈+ ω(t)2ρ =
ω0

ρ3
(1.2.3)

and β̈ + ω(t)2β =
F (t)

m
, (1.2.4)

for ω0 some constant which we set as ω0 := ω(0). The related dynamical invariant is given

in this case by42,43

I =
1

2m

(
ρ
(
p−mβ̇

)
−mρ̇(r − β)

)2

+
1

2
mω2

0

(
r − β
ρ

)2

+ V

(
r − β
ρ

)
. (1.2.5)
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We may add an arbitrary purely time-dependent term to eq. (1.2.2), since this will produce

no force and not affect the Physics of the situation.42,44 Hence, setting F (t) = mω(t)2r0(t)

and V
(
r−β(t)
ρ(t)

)
= 0 then adding the term 1

2
mω(t)2r2

0(t) to eq. (1.2.2) gives

U(r, t) =
1

2
mω(t)2

(
r − r0(t)

)2
. (1.2.6)

This is the potential term for a harmonic trap with angular frequency ω(t) with the centre

of the trap given by r0(t). The constraint equation from eq. (1.2.4) then becomes Newton’s

second law of motion for a classical particle in a harmonic potential

β̈ + ω(t)2
(
β − r0(t)

)
= 0, (1.2.7)

where we will identify the classical particle trajectory rc(t) = β(t). Using the Ehrenfest

theorem, we can interpret rc(t) as the trajectory taken by the expectation value of the

position for the transported particle. By rearrangement, we can write the location of the

centre of the harmonic trap as

r0(t) =
r̈c

ω(t)2
+ rc, (1.2.8)

and we can similarly rearrange eq. (1.2.3) for the angular frequency

ω(t) =

√
ω2

0

ρ4
− ρ̈

ρ
. (1.2.9)

Considering the transport of a particle over a distance d in a time tf where the final

harmonic trap frequency ω(tf ) = ω0/γ, we require

rc(0) = 0, rc(tf ) = d (1.2.10)

and ρ(0) = 1, ρ(tf ) = γ. (1.2.11)

Additionally, it can be shown that demanding
[
I(0), H(0)

]
= 0 and

[
I(tf ), H(tf )

]
= 0

such that the transport modes correspond with eigenfunctions of the Hamiltonian re-

quires42,44

ṙc(0) = ṙc(tf ) = 0 (1.2.12)

ρ̇(0) = ρ̇(tf ) = 0. (1.2.13)

Similarly, satisfying eq. (1.2.1) requires42,44

r̈c(0) = r̈c(tf ) = 0 (1.2.14)

ρ̈(0) = ρ̈(tf ) = 0. (1.2.15)

An infinite number of functions rc(t), ρ(t) can be found which satisfy these boundary

conditions. In chapter 3 we consider some of these functions. It is important to note

that when transport occurs in a rigid harmonic potential where ω(t) = ω0, eqs. (1.2.11),

(1.2.13) and (1.2.15) are all satisfied by ρ(t) = 1.

5



Chapter 2

Simulation construction
In this chapter we will outline the experimental data, methods and some of the funda-

mental theory that we have used to implement our simulations.

2.1 Optical Tweezers

2.1.1 Harmonic potential approximation

It is well-known that analytic functions can often be locally approximated around their

critical points by quadratic functions. This allows us to approximate a wide range of

potentials as harmonic close to their local minima and maxima.

In a number of places in this report, we will use that the potentials resultant from the

optical tweezers (see section 2.1.2) can be modelled as harmonic potentials. In general,

this is a reasonable approximation since the atoms being simulated usually remain in

low energy states and are therefore only experience the effects of the potential in a small

neighbourhood around the potential minimum. The anharmonic nature of the tweezer

potentials becomes more important when we consider the effective potentials during the

tweezer merging in chapter 4.

2.1.2 Trapping potential

The optical tweezers used to trap the single Rb and Cs atoms utilise a focussed Gaussian

radiation beam as mentioned in section 1.1 and further explored in appendix C. For such a

radiation beam, the spatial distribution of its intensity is given, in cylindrical coordinates

(r, z), by25,45

I(r, z) =
2P

πw(z)2
exp

(
− 2r2

w(z)2

)
. (2.1.1)

Here, P is the beam power, w(z) := w0

√
1−

(
z
zR

)2

where w0 is the beam waist and the

Rayleigh range zR := π
w2

0

λ
.

Using eq. (1.1.1), the resultant potential due to the dipole force interaction is

U(r, z) = − Pα

πcε0w(z)2
exp

(
− 2r2

w(z)2

)
= −U0

w2
0

w(z)2
exp

(
− 2r2

w(z)2

)
, (2.1.2)

where U0 := Pα
πcε0w2

0
is the trap depth.

Considering one-dimensional slices of this potential along z = 0 and r = 0, the potentials

6



in the radial and axial directions are found to respectively be

U(r) = −U0 exp

(
−2r2

w2
0

)
(2.1.3)

and U(z) = −U0
w2

0

w(z)2
= −U0

(
1−

(
z

zR

)2
)−1

. (2.1.4)

In the case that the energy of the trapped atom is small in comparison to the potential

depth (kbT � U0), the radial and axial potentials can be approximated by a cylindrically

symmetric harmonic oscillator. The equation for this can be found by expanding eq. (2.1.3)

and eq. (2.1.4) up to quadratic order and combining the resultant expressions to yield

U(r, z) = −U0

(
1− 2r2

w2
0

− z2

z2
R

+O
(
r4, z4

))
. (2.1.5)

Comparison of this equation in each dimension to the one-dimensional harmonic oscillator

equation U(x) = 1
2
mω2x2 permits the identification of harmonic trap frequencies in the

radial and axial directions. These are found to be

ωr =

√
4U0

mw2
0

(2.1.6)

and ωz =

√
2U0

mz2
R

. (2.1.7)

These harmonic trap frequencies are natural parameters to characterise the trapping

potential and are used in the determination of the simulation units discussed in sec-

tion 2.2.

In this work, we only simulate the radial component of the Gaussian potential given

by eq. (2.1.3). Focussing on the radial component is justified since the trap is moved

exclusively in the radial direction, thus the atom is much more likely to be excited in this

coordinate.

Previous numerical simulations of merging tweezers containing Na and Cs atoms by

Liu et al. found that when the radial and axial coordinates are considered independently,

the probability of motional excitation was negligible in the axial direction compared to

the radial direction.13,45 Despite this, it may be possible that simulating a trap which

simultaneously possesses a radial and axial coordinate could allow the identification of

behaviour missed by completing separate simulations for each coordinate. This would

also allow us to quantify the consequences of slight tweezer misalignments on the merging

process. As such, a possible improvement to the current simulation would be for it to

simulate a two-coordinate Gaussian potential.

For notional simplicity, we will now use ω instead of ωr to refer to the harmonic trap

frequency for a Gaussian potential in the radial coordinate.

7



2.1.3 Experimentally determined parameters

We have listed the experimental parameters used to construct the optical tweezer po-

tentials we simulated in table 2.1. The real parts of the complex ground state atomic

polarisabilities, αCs(λ) and αRb(λ), were calculated with the method described by Safro-

nova et al. using the values they give for the required atomic parameters.46

λ (nm) w0 (µm) P (mW) (αCs(λ), αRb(λ))
(
×10−3 a3

0

)
814 0.92 1.38 (−3.22, 4.76)

938 1.06 3.13 (2.89, 1.03)

Table 2.1: The experimental parameters used for the optical tweezer potentials throughout this investig-
ation.

The 814 nm optical tweezer will initially contain the Rb atom and the 938 nm tweezer

will initially contain the Cs atom. The 814 nm tweezer is blue-detuned from the Cs D-

line transitions (852 nm and 895 nm),32 thus αCs(814 nm) is negative and the potential is

repulsive for the Cs atom as shown in fig. 2.1(a).

For the Cs to remain trapped during the tweezer merge, we must have
∣∣P814αCs(814 nm)

∣∣ <∣∣P938αCs(938 nm)
∣∣ where P814 and P938 are the powers of the 814 nm and 938 nm tweez-

ers respectively. Additionally, to prevent the Rb atom from spilling into the 938 nm

tweezer and gaining excess energy during the merge we require
∣∣P814αRb(814 nm)

∣∣ >∣∣P938αRb(938 nm)
∣∣. Using wavelengths of 814 nm and 938 nm for the tweezers allows these

conditions to be met whilst also minimising the scattering rates for both atoms, hence

minimising their rate of heating via the photon scattering process discussed in sec-

tion 1.1.2.35

Figure 2.1: Optical tweezer potentials U(r) used in our simulations (parameters are given in table 2.1)
with their initial separation of 2.5 µm = 82 ah. In both figures, the solid red line gives the potential
resultant from the 938 nm tweezer and the dashed blue line gives the potential from the 814 nm tweezer.
(a) Potentials experienced by the Cs atom. (b) Potentials experienced by the Rb atom.

The tweezer powers used are equal to those used for loading the atoms into the optical
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tweezers. As shown in fig. 2.1, these powers result in a trap depth of approximately

1.2 mK for each atom in its initial tweezer. Experimentally, the trap depths will be slightly

shallower than this since we have not accounted for the imperfect transmission of the laser

beams through the optical apparatus. In section 4.3 we will consider adjusting the tweezer

powers during the merging process.

In the experimental apparatus, the beam waists were found to be radially asymmetric.35

For our one-dimensional simulations, we have used the values measured for the beam

waists along the merge coordinate.

In all of our merging simulations, we start with the optical tweezers separated by a distance

of 2.5 µm (equivalent to 82 ah, see section 2.2). This initial separation gives minimal overlap

between the tweezer potentials for both atoms and hence ensures both atoms are initially

in the isolated tweezer potentials. This can be seen by inspection of the tweezer potentials

in fig. 2.1.

2.2 Units
The scales being modelled by the simulation are very small in comparison to those which

SI units were designed to primarily describe. As such, a näıve implementation of SI units

within the simulation would force the use of very small numbers which cannot be ac-

curately manipulated using normal data types due to the constraints of floating point

arithmetic.47

Whilst this issue could be mitigated by working with appropriate SI unit prefixes, we

have instead defined a new unit system by setting three constants to be of unit value in

the simulation. These constants were chosen to be

• the reduced Planck constant, ~ = 1.054 572× 10−34 J s,48

• the mass of 133Cs, mCs = 132.9055 u = 2.206 947× 10−25 kg48 and

• the radial harmonic trap frequency, ω =
√

4U0

mCsw
2
0

s−1 as given by eq. (2.1.6).

The choice of these allows certain key quantities to be expressed in a more natural way.

For example, energy is expressed in units of ~ω, thus the harmonic oscillator energy levels

take half-integer values in these units. Additionally, these units allow the simplification of

many calculations within the simulation by reducing the number of constants that need to

be included. A description of how the SI base quantities are described in these simulation

units is given in table 2.2.

Base quantity Simulation unit Symbol

Mass mCs

Time 2π/ω Th

Length
√
~/(mCs ω) ah

Table 2.2: The simulation units associated with the SI base quantities. Base quantities not included within
this table remain described by SI units within the simulation.
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Throughout this report, we may refer to the time and length units listed in table 2.2 using

the unit symbols we define in the table.

2.3 Numerical simulation methods

Within our simulations we used the split-step method (also known as the split operator

method) to propagate our system in time.49,50 We also used the split-step method to find

the ground states of our system by propagating our system in imaginary time.51

Whilst developing our simulations, we evaluated the use of the short iterative Lanczos

method for our time propagation.49,50,52–54 We found that the split-step method offered

better performance and stability for our one-dimensional simulations, however we ex-

pect that it may yield better performance for simulations involving multiple dimensions

such as those mentioned in section 2.1.2. We discuss these simulation methods further in

appendix D.

For the simulations in this report, we used a grid spacing of ∆r = 0.06 ah = 1.8 nm on a

grid of length 150 ah = 4.6 µm. In all simulations where the motional time was less than

15 Th = 186 µs we used a timestep ∆t = 0.01 Th = 0.12 µs. In fig. 4.3, we used a slightly

larger timestep of ∆t = 0.02 Th = 0.25 µs for the simulations used to obtain results with

motional times larger than 15 Th = 186 µs. This was required to reduce the time required

to complete the simulations.
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Chapter 3

One tweezer transport
We first simulated the motion of an isolated 938 nm tweezer containing a single Cs atom

which was initially in its ground motional state. This allowed us to identify characteristics

of the trajectories which are independent of the tweezer merging process.

In this chapter we will introduce the trajectories we used for the tweezer motion and

present the results we obtained. All of our presented results relate to moving the single

938 nm tweezer a fixed distance d = 82 ah = 2.5 µm, since this is the initial tweezer

separation used in the merging process (see section 2.1.3 ). We vary the speed of the

transport by changing the time the tweezer takes to move this fixed distance.

3.1 Linear trajectory
A linear trajectory involves transporting a particle constant speed with sharp acceler-

ations at the start and end of the motion as shown in fig. 3.1(a). This is an example

of a so-called ‘bang-bang’ trajectory, where there are abrupt changes in the acceleration

during the motion.37 This trajectory is worth considering due to the ease in which it can

be implemented experimentally and the conceptual insight which it will allow into the

behaviour observed when completing the transport with other trajectories.

3.1.1 Predictions for a harmonic potential

Using the results from section 1.2.1 on Lewis-Riesenfeld invariants, we will show that it is

possible to satisfy the boundary conditions specified in eqs. (1.2.10), (1.2.12) and (1.2.14)

when transporting an atom in a rigid harmonic potential using a linear trajectory. For

a trajectory where these boundary conditions on the associated classical trajectory rc(t)

are satisfied, we expect that there will be a high probability that the atom remains in its

initial state after the transport is complete. Such a transport is said to be ‘high-fidelity’.

For this transport, the boundary conditions on ρ(t) (eqs. (1.2.11), (1.2.13) and (1.2.15))

are trivially satisfied by ρ(t) = 1 due to the constant trap frequency.

We take the linear trajectory to be given by r0(t) = sd. Here d is the transport distance

and s := t/tf where tf is the transport duration. Setting the trap frequency ω(t) = ω0,

we use eq. (1.2.8) to find

r̈c + ω2
0rc = ω2

0sd. (3.1.1)

Solving this differential equation for rc, we obtain

rc(t) = A exp(iω0t) +B exp(−iω0t) + sd, (3.1.2)

where A and B are constants that we will determine. Imposing the boundary conditions

given by eqs. (1.2.10) and (1.2.12) yields

rc(t) = − d

tfω0

sin(ω0t) + d
t

tf
, where tf =

2nπ

ω0

for n ∈ N∗ := N \ {0} , (3.1.3)

which automatically satisfies the boundary conditions given by eq. (1.2.14).
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We can understand the restrictions on tf by analysing the boundary conditions they

come from and considering what they mean for a classical particle being moved in a

harmonic potential. This analysis remains applicable in the quantum mechanical case

when interpreted in the context of the position expectation value of the atomic wave

function by the Ehrenfest theorem.

The rc(tf ) = d condition (eq. (1.2.10)) imposes that tf = nπ
ω0

. This ensures that the particle

is in the centre of the potential at the end of the transport and thus has minimal poten-

tial energy. The further restriction on tf enforced by the ṙc(tf ) = 0 boundary condition

(eq. (1.2.12)) requires that the particle has zero final kinetic energy due to the trans-

port. Together these will minimise the energy gained by the atom during the transport

process.

From these conditions, we expect that the transported particle might gain a maximal

amount of excess energy during the transport if tf = (2n+1)π
ω0

. This is justified by noting

that ṙc(tf ) (and thus the kinetic energy) is maximal when this condition is met while the

potential energy will be minimal.

Figure 3.1: (a) The linear transport trajectory. Here r0 is the position of the potential minimum, d is the
total distance moved and tf is the time taken for the transport. (b) The classical particle trajectory rc
during transport in a rigid harmonic trap with frequency ω0 moving with a linear trajectory. We have
plotted case where tf = 4π/ω0 which is given by eq. (3.1.3) when n = 2.

We can gain a more intuitive understanding of this by by considering the energy transfers

which occur during the transport of the classical particle. At the start of the transport,

the potential is instantaneously displaced some fixed distance proportional to the trans-

portation speed. Due to the harmonic nature of the potential, the potential energy gained

by the particle will be equal to the kinetic energy associated with the motion of the po-

tential. This results in the particle being stationary in the laboratory frame when it moves

with maximal speed relative to the potential in the direction opposite to the transport

direction. This is illustrated in fig. 3.1(b) where we have plotted the classical trajectory

given by eq. (3.1.3) for the case of n = 2.
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If the potential motion is stopped at the instant the particle is at rest in the laboratory

frame and located in the centre of the potential, it will remain stationary and finish the

transport in a low energy state. Similarly, if the atom has a maximal velocity at the

centre of the potential when the transport concludes, it will instead be in a maximal

energy state.

In section E.1 of appendix E, we have included URLs to animations which visually illus-

trate our discussions in this section.

3.1.2 Tweezer potential results

As explained in section 2.1.1, we expect that the Gaussian potential experienced by the

Cs atom from the 938 nm optical tweezer will exhibit significant harmonic character and

can be assumed to behave as a harmonic potential. We thus expect that the results found

in section 3.1.1 will be valid for transporting the Cs atom in the 938 nm tweezer and we

should observe faithful atomic transport when the transport time tf = nTh for n ∈ N∗.
Throughout this subsection, we will use that n ∈ N∗.

Our results in fig. 3.2 show that this is partially true. For long transport times, where

tf & 10 Th, we see good agreement with the predictions of section 3.1.1. In this regime,

the probability that the Cs atom was in the motional ground state after the transport

PCs, was close to 100 % when tf = nTh. As predicted, we also observe minima of PCs and

maxima for the final Cs energy ECs, when tf = (n+1/2) Th. As one might expect, we also

found that the maxima of ECs decrease and the minima of PCs increase as the transport

times are increased and the adiabatic transport regime is approached.

However, at short transport times the PCs maxima (and ECs minima) occur at longer

transport times than expected. Additionally, The peak values for the PCs maxima are

significantly less than one when tf ≤ 3 Th. This behaviour is not reproduced when the

simulations are repeated with a harmonic potential, thus we discount the possibility that

they occur as a result of the simulation parameters we used or due to a numerical arte-

fact. Instead, these effects result from the anharmonicity of the Gaussian potential. This

anharmonicity reduces the effective trap frequency, thus leading to the longer oscillation

period we observe.

This is reasonable since we expect that the effect of the Gaussian potential anharmonicity

will more pronounced for shorter transport times, since the wave function has a greater

energy during faster transports. This will result in the wave function experiencing the

greater anharmonic character of the Gaussian potential further from the bottom of the

potential.

Although we were able to achieve relatively high values of PCs for certain small values of

tf , it is unlikely that these will be achievable experimentally. In fig. 3.2, it is very clear

that any small deviation in tf from the values were the PCs maxima occur will result in

large motional excitations for the Cs atom. This is especially pronounced for the shorter

transport times. Experimentally, it will likely be difficult to ensure the tweezer control

is sufficiently accurate and precise enough to precisely achieve the short transport times

which give a fast and high-fidelity transport.
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Figure 3.2: Results from transporting a Cs atom in the 938 nm tweezer using a constant speed, linear
trajectory. The probability that the Cs atom remained in its ground state after the transport PCs is given
by the dashed blue line and the final energy of the atom ECs is given by the solid red line.

3.2 Minimum-jerk trajectory
Liu et al. have previously merged optical tweezers containing single Cs and Na atoms

using the so-called ‘minimum-jerk trajectory’ which is designed to transport the equilib-

rium point of a classical harmonic oscillator with minimal motional excitation.13,45 This

trajectory takes the functional form

r(t) = d
(
10s3 − 15s4 + 6s5

)
, (3.2.1)

where d is the total distance moved, s := t/tf and tf is the time over which the trans-

portation takes place. This function is plotted in fig. 3.3(ii).

One of the aims of our investigation is to determine if a tweezer trajectory different to

the minimum-jerk trajectory will allow a faster tweezer merging. As such, this trajectory

acts like a control for us to benchmark our methods against.

By using the minimum-jerk trajectory plotted in fig. 3.3(ii) to control the position of the

938 nm optical tweezer, we obtain the results in fig. 3.3(i). Immediately, it is clear that

the Cs ground state occupation probability following transport PCs reaches consistently

high values at much shorter transport times than we saw for the linear trajectory in

fig. 3.2.

For small values for the transport time tf , the PCs maxima and minima show a clear

periodic dependence on tf similar to that seen for the linear trajectory. This occurs since
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Figure 3.3: (i) Results from transporting a Cs atom in the 938 nm tweezer using the minimum-jerk
trajectory. The probability that the Cs atom remained in its ground state after the transport PCs is
shown by the dashed blue line while the final energy of the atom ECs is given by the solid red line.
(ii) The minimum-jerk trajectory where r0(t) is the tweezer position, d is the transport distance and tf
is the total time taken for the transport.

the Cs position expectation value starts oscillating in the potential during the transport

in a similar manner to that seen for the linear transport. Due to this motional excitation,

the exact transport duration becomes important in order to satisfy the r0(tf ) = d and

ṙ0(tf ) = 0 boundary conditions.

The smooth acceleration of the minimum-jerk trajectory results in a smaller motional

excitation during transport than if a linear trajectory is used, thus the PCs minima occur

at much higher values than those in fig. 3.2. This periodic behaviour of PCs continues as

the value of tf increases, however the amplitude of these probability oscillations continue

to decrease as the adiabatic regime is approached. We obtain PCs > 99 % for all transports

with tf > 6.54 Th = 81.1 µs (refer to table F.1 of appendix F for more details).

Unsurprisingly, this trajectory yields overall better results than those seen for the linear

trajectory as we are able to obtain high fidelity transport at much lower values of tf
without requiring highly precise and accurate control over the tweezer motion.

3.3 Lewis-Riesenfeld trajectories

As stated in section 1.2.1, an infinite number of classical trajectories rc(t) can be found

which satisfy the boundary conditions given by eqs. (1.2.10), (1.2.12) and (1.2.14). In this

section, we only consider a single example of rc(t) resultant from assuming that it takes
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the form of a fifth order polynomial. The use of other functions for rc(t), such as the

Fourier series form studied by Lam et al.,38 may yield better results and are a potentially

interesting direction for further exploration of the problem.

3.3.1 Polynomial ansatz

As introduced above, by using the fifth order polynomial ansatzes of rc(t) =
∑5

i=0 βis
i

and ρ(t) =
∑5

i=0 ρis
i where s := t/tf , we can satisfy the boundary conditions given by

eqs. (1.2.10), (1.2.12) and (1.2.14) if we take42,44

rc(t) = d
(
10s3 − 15s4 + 6s5

)
(3.3.1)

and ρ(t) = 1 + 10(γ − 1)s3 − 15(γ − 1)s4 + 6(γ − 1)s5. (3.3.2)

Notice that the function for rc(t) we find is the minimum-jerk trajectory given in eq. (3.2.1).

This is not unexpected, since the minimum-jerk trajectory is the optimum classical traject-

ory (see section 3.2) and rc(t) is the classical solution to the harmonic oscillator equation

eq. (1.2.8).

Using eq. (1.2.8) with rc(t) given by eq. (3.3.1) we obtain

r0(t) = d
60s− 180s2 + 120s3(

tfω(t)
)2 + rc(t). (3.3.3)

Since r0(t) depends on the total transport time tf , it represents a class of trajectories. In

this report we will refer to the trajectories we have found using this fifth order polynomial

ansatz as the Lewis-Riesenfeld trajectories.

Considering the limit of large transportation times tf → ∞ and assuming that ω(t) is

bounded, we have 1/tfω(t)→ 0 so r0(t)→ rc(t). Thus demonstrating that the minimum-

jerk trajectory is the classical limit of the Lewis-Riesenfeld trajectories as we expect from

the correspondence principle.

By substituting ρ(t) from eq. (3.3.2) into eq. (1.2.9), we may similarly obtain an ex-

pression for the angular frequency of the harmonic trap. We will consider this more in

section 4.3.

3.3.2 Application to single tweezer transport

Using the trajectories given by eq. (3.3.3) and setting ω(t) = ω0 in our single tweezer

transport simulation, we obtain the results shown in fig. 3.4(i). As we have discussed, the

tweezer trajectories are different for different values of the transportation time tf . This is

shown in fig. 3.4(ii), where we have plotted the trajectories for three different values of tf
(blue, red and green lines) and can see how the trajectories converge to the minimum-jerk

trajectory (black dotted line) as tf increases.

In fig. 3.4(i), we see that the probability of the Cs atoms being in the ground state after

the transport PCs rapidly increases when tf > 1.2 Th and we obtain PCs > 99 % for

all transports taking longer than 1.67 Th = 20.7 µs. We do not observe the probability

fluctuations seen for the linear and minimum jerk trajectories since the wave function is

not motionally excited within the potential during transport in the same way. During a
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Figure 3.4: (i) Results from moving the 938 nm tweezer using the Lewis-Riesenfeld trajectories given by
eq. (3.3.3). The probability that the atom remained in its ground state after the transport PCs is given
by the dashed pale blue line and the final energy of the Cs atom ECs is given by the solid orange line.
The three coloured vertical lines correspond to the transport times tf for the trajectories shown in the
(ii). (ii) An illustrative sample of the Lewis-Riesenfeld trajectories used. Here, r0(t) is the optical tweezer
position, d is the distance the Cs transported and tf is the total transport time. The dashed blue line gives
the trajectory for tf = 0.95 Th (blue vertical line in (i)), the dash-dotted red line shows the trajectory
for tf = 1.35 Th (red line in (i)) and the dash-double-dotted green line gives the same for tf = 2.15 Th

(green line in (i)). The dotted purple line shows the minimum-jerk trajectory which is the limit of the
Lewis-Riesenfeld trajectories as tfω0 →∞.

transport with a Lewis-Riesenfeld trajectory, the wave function is driven up one side of

the potential during the first half of the motion, before the process is mirrored in reverse

for the final half. This is shown in the animations in section E.4 of appendix E.

The values for PCs obtained when tf < 1.2 Th are found to be due to the anharmonicity of

the Gaussian potential. With a perfectly harmonic potential, we found that it is possible

to maintain high ground state probabilities when tf < 0.5 Th.

The effects of the anharmonicity of the tweezer potential, could potentially be reduced

by increasing the power of the trapping radiation and thus making the tweezer potential

deeper. However, doing this does not have such a straightforward effect on the merging

process since it will also effect the probability that the Rb atom in the 814 nm tweezer

becomes motionally excited. We will discuss altering the tweezer beam powers (and thus

the potential depths) in section 4.3.
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Chapter 4

Merging two tweezers
We will now turn our attention to the merging process between the two tweezers. In this

process, both tweezers initially contain single atoms in their ground motional state and the

938 nm tweezer (containing the Cs atom) is moved whilst the 814 nm tweezer (containing

the Rb atom) is held in a fixed position.

We have not modelled the interactions between the atoms since we assume that we will

be able to find an appropriate Feshbach resonance such that the Cs and Rb interspecies

interactions can be tuned to zero. In the future, it may be interesting to consider the

effects of non-zero interatomic interactions on the merging process.

4.1 Effective potential considerations
When merging the two optical tweezers, the effective potential experienced by each atom

is the linear sum of the potentials experienced by the atom from each optical tweezer.

Using eq. (2.1.3), this is given by

U(r, t) = −U814 exp

(
−2(r − r814)2

w2
814

)
− U938 exp

−2
(
r − r938(t)

)2

w2
938

, (4.1.1)

where U814, U938 are the trap depths; w814, w938 are the beam waists and r814, r938(t) are

the locations of the 814 nm and 938 nm tweezers respectively.

Due to our choice of trap frequencies and powers, the effective potential in the neigh-

bourhood of each atom consists of a single potential minimum (see section 2.1.3). This

allows us to continue utilising the harmonic approximation for our potentials, however the

merging process introduces additional complexities to this approximation which were not

present in the single tweezer transport. In this section we will identify these complexities

and will start exploring ways in which we can compensate for their effects.

4.1.1 Trajectory compensation

During the tweezer merging process, there is no longer a direct correspondence between

the tweezer positions and the locations of the potential minima experienced by each atom.

This can be seen in fig. 4.1(a) where the position of the effective potential minimum for

the Cs atom (solid blue line) deviates from the 938 nm tweezer position (dashed red line)

as it is moved with a linear trajectory. This deviation begins as the potentials due to each

tweezer start to merge at t/tf ≈ 0.4 where tf is the total time for the merge. At t = tf ,

the tweezers are fully merged and the centres of the tweezer potentials are aligned, so this

deviation disappears.

The effective potential experienced by the Cs atom UCs(r, t) can be found by using appro-

priate values for U814 and U938 in eq. (4.1.1). By solving ∂UCs(r,t)
∂r
|rmin(t) = 0 where rmin(t) is

the location of the Cs atom potential minimum, we can find the 938 nm tweezer position

r938 as a function of rmin. This thus allows us to determine how we should move the 938 nm
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Figure 4.1: The 938 nm optical tweezer and Cs potential minimum positions during a tweezer merging
processes taking a time tf where the tweezers are initially separated by a distance d = 2.5 µm. The
solid blue lines give the potential minimum location and the dashed red lines show the 938 nm tweezer
position. (a) Moving the 938 nm with a linear trajectory results in the Cs potential minimum moving with
a non-linear trajectory due to the effects of the merging potentials. (b) By moving the 938 nm optical
tweezer with a trajectory calculated using eq. (4.1.2), the Cs potential minimum is made to move with a
linear trajectory. The residuals shown are those between the Cs potential minimum location and a linear
trajectory and have a magnitude smaller than half the spatial grid spacing ∆x/2 = 0.9 nm = 0.03 ah.

optical tweezer such that the potential minimum moves with our desired trajectory. Com-

pleting this process yields

r938(t) = rmin ±
1

2
w938

√
−W (−A2)

where A :=
2U814w938

U938w2
814

(rmin − r814) exp

(
−2(rmin − r814)2

w2
814

)
.

(4.1.2)

In this equation, W (z) is the Lambert W -function which is defined to be the function

satisfying55,56

W (z) exp
(
W (z)

)
= z for z ∈ C. (4.1.3)

Unfortunately, W (z) cannot be expressed in terms of elementary functions. Additionally,

the values for −A2 which are relevant for our experiment lie within the interval (−1/e, 0)

for which W (−A2) is double valued.56 Using the Lagrange inversion theorem, we can find

a series expansion for the principle branch W0(z) about z = 0 given by56,57

W0(z) =
∞∑
n=1

(−n)n−1

n!
zn for |z| < 1

e
. (4.1.4)

From inspection of fig. 4.1(a), it is clear that only the positive square root value in

eq. (4.1.2) is relevant for correcting the 938 nm tweezer position. We have found that

using this with the tenth order series expansion of W0(−A2) yields sufficiently accurate

results as shown in fig. 4.1(b).
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In fig. 4.1(b), we see that the maximum values for the residuals between the Cs potential

minimum location and a linear trajectory are less than half the spatial grid size ∆x/2 =

0.03 ah = 0.9 nm (refer to section 2.3). This and the uniformly periodic nature of the

residuals throughout the merging process indicate that these errors result from our finite

spatial grid spacing instead of from errors in the trajectory compensation. We similarly

find that the deviations between the Cs potential minimum location and its intended

location remain less than ∆x/2 for all of the other trajectories we have tested.

We also observe that the effective potential global minimum for the Rb atom moves during

the merging process despite the 814 nm tweezer being kept in a fixed position. For short

merge times, this results in some motional excitation of the Rb atom, however for all of

the trajectories except those in section 4.3 that we consider, this excitation is much less

than that experienced by the Cs atom. This can be seen in table F.2 of appendix F.

4.1.2 Harmonic trap frequencies

During the tweezer merging process, the harmonic trap frequencies experienced each atom

will change. Using a similar method to that described in section 2.1.2, we Taylor expand

the effective potential given by eq. (4.1.1) up to quadratic order about the relevant optical

tweezer location a. Comparing the resultant quadratic terms to 1
2
mω2

aa
2 gives the harmonic

trap frequency

ω2
a =

4

m

Ua
w2
a

− Ub
w2
b

(
4(a− b)2

w2
b

− 1

)
exp

(
−2(a− b)2

w2
b

). (4.1.5)

Here, Ua is the trap depth and wa is the beam waist for the optical tweezer with position

given by a. Similarly, b, Ub and wb are the position, trap depth and beam waist respectively

for the other tweezer. This equation remains valid as long as the tweezer location a remains

close to the position of the minimum in the effective potential. In this case, the difference

between these two positions will only introduce linear terms in the Taylor expansion so

the quadratic terms (and hence ωa) will be unaffected. We will assume that this is true

in our simulations, however if the trajectory compensation given by eq. (4.1.2) becomes

too large this may no longer hold, thus introducing an error in our value of ωa.

As we expect, we recover the result given in eq. (2.1.6) for the harmonic frequency of an

isolated Gaussian potential when we take the limit of an infinitely large tweezer separation

(a − b) → ∞ in eq. (4.1.5). We also see that when a − b = wb/2, the difference between

ωa and its limiting value at infinite tweezer separation changes sign. This occurs when a

coincides with position of the inflection point for the Gaussian potential resultant from

the tweezer at b.

In fig. 4.2, we have plotted how the harmonic trap frequencies change during the merging

of the 938 nm and 814 nm optical tweezers using eq. (4.1.5). For Cs (solid red line), the trap

frequency initially increases as the repulsive potential resultant from the 814 nm tweezer

is approached and causes the Cs effective potential to constrict. The trap frequency then

falls as the shallower effective potential depth takes effect. From the perspective of the Rb

atom (dashed blue line), the opposite occurs and the trap frequency initially falls as the

20



Figure 4.2: Harmonic trap frequencies ω experienced
by the Cs atom (solid red line) and Rb atom (dashed
blue line) during the tweezer merging process. These are
presented as a function of the optical tweezer separation
|r938 − r814| and are plotted relative to the initial trap
frequency experienced by the Cs atom ωi.

Rb effective potential becomes wider due to the merging of the two attractive potentials.

This later reverses as the trap depth of the effective potential increases.

Due to these changes in the trap frequency, we will report the post-merge atomic energies

using the harmonic trap frequency for each atom after the merge ωf . Additionally, from

now we will only refer to the merging times using SI units.

4.2 Minimum-jerk and Lewis-Riesenfeld trajectories
In this section, we present results obtained by merging the optical tweezers were the

938 nm tweezer is moved using eq. (4.1.2) such that the Cs potential minimum moves

with our specified trajectory. We consider the minimum-jerk trajectory and two classes of

Lewis-Riesenfeld trajectories; rigid Lewis-Riesenfeld trajectories identical to those used in

section 3.3 and non-rigid Lewis-Riesenfeld trajectories where we calculate the harmonic

trap frequency at each timestep using eq. (4.1.5) and use this in the trajectory calculation

(see eq. (3.3.3)). Our results are shown in fig. 4.3.

In our results, we reach high ground state occupation probabilities for the Cs atom PCs

for all of the trajectories at significantly longer merge times tf than those found for the

one-tweezer transport in chapter 3. This is primarily attributed to the changes in the Cs

harmonic trap frequency during the merging process which we will explore in section 4.3.

We have not plotted any data for the Rb atom here since its ground state occupation

probability PRb is much higher PCs for all values of tf (we show this in table F.2 of

appendix F).

The minimum-jerk trajectory (dashed lines), exhibits behaviour similar to that seen in

section 3.2 with the final Cs energies ECs and values of PCs showing a periodic dependence

on tf . This continues at longer merge times as shown in the inset, where the amplitudes

of the probability oscillations decrease as tf increases and the adiabatic regime is ap-

proached.

The rigid Lewis-Riesenfeld trajectories (solid lines) show a very small improvement over

the minimum-jerk trajectory and the non-rigid Lewis-Riesenfeld trajectories (dot-dashed

21



Figure 4.3: The probability that the Cs atom remains in its motional ground state PCs (blue and navy
lines, increasing with tf ) and its energy after the merge ECs (red, orange and purple lines, decreasing with
tf ), when merging the two optical tweezers. The 938 nm tweezer is moved such that the effective potential
minimum for the Cs atom follows a minimum jerk (dashed lines), rigid Lewis-Riesenfeld (solid lines) or
non-rigid Lewis-Riesenfeld (dot-dashed lines) trajectory, by using eq. (4.1.2). We compute the rigid Lewis-
Riesenfeld trajectories using the harmonic trap frequency for a Cs atom in the 938 nm tweezer Gaussian
potential. The non-rigid Lewis-Riesenfeld trajectories are instead computed using the trap frequencies
found using eq. (4.1.5) at each timestep. The energies in the main figure are plotted relative to harmonic
frequency of the Cs effective potential at the end of the merge ωf . The inset shows the detailed behaviour
of PCs when PCs > 98 %. The small discontinuities seen in the inset at tf = 186 µs result from a change in
the simulation timestep from 0.12 µs (for tf ≤ 186 µs) to 0.25 µs (for tf > 186 µs) and does not represent
physical behaviour.

lines) show a further moderate improvement when tf . 140 µs. Both classes of Lewis-

Riesenfeld trajectories yield values for PCs which weakly oscillate with tf , although this

is much less pronounced than in the minimum-jerk trajectory. This indicates that both

are unable to prevent significant motional excitations of the Cs atom during the merging

process.

In the inset of fig. 4.3, we see that all three types of trajectory exceed PCs = 99 % for

tf ≈ 150 µs. The combined ground state occupation probabilities for both the Cs and Rb

atom Pcombined = PCs × PRb similarly exceed 99 % when tf ≈ 150 µs (shown in table F.2).

In our experiment, we require that both atoms are in their ground state for successful

molecule formation to occur,19,20 thus require very high values for Pcombined. Thus, when

using this method the choice between these trajectories is fairly inconsequential.

When not using eq. (4.1.2) to correct the tweezer trajectory, we found that tf > 350 µs is

required to to achieve PCs > Pcombined > 99 % (refer to section G.1 and table F.3).
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4.3 Trap frequency control
In the previous section, we stated that the main reason we achieved lower ground state

probabilities than we found for the single tweezer motion in chapter 3, is that the Cs

trap frequency changes during the merging process. So far in this report, we have only

considered satisfying the Lewis-Riesenfeld boundary conditions on the Cs classical tra-

jectory rc(t) (eqs. (1.2.10), (1.2.12) and (1.2.14)) which is related to potential minimum

position by eq. (1.2.8). However, the inverse engineering method using Lewis-Riesenfeld

invariants discussed in sections 1.2.1 and 3.3.1 also imposed boundary conditions on ρ(t)

(eqs. (1.2.11), (1.2.13) and (1.2.15)) which is related to the harmonic trap frequency by

eq. (1.2.10). These boundary conditions are not satisfied with the merging procedure we

used in section 4.2 due to the uncontrolled changes in the Cs atom trap frequency.

In principle, we can control the trap frequency for one of the atoms during the merging

process by appropriately adjusting the beam power for one of the optical tweezers. By

re-arranging eq. (4.1.5) we can find

Ua = w2
a

1

4
mω2

a +
Ub
w2
b

(
4(a− b)2

w2
b

− 1

)
exp

(
−2(a− b)2

w2
b

), (4.3.1)

then using the trap depth definition from section 2.1.2 we relate Ua to the beam power

Pa =
πcε0w

2
a

α
Ua.

In our simulations, we will treat eq. (4.3.1) as being independent of eq. (4.1.2) and will

use the tweezer locations a and b from the previous simulation timestep to determine the

tweezer power for the current timestep. This approximation results in the sub-optimal

trap frequency control shown in fig. 4.4(ii).

By adjusting the power of the 938 nm tweezer during the merging process we can attempt

to keep the Cs harmonic trap frequency fixed at its initial value. From the perspective of

the Cs atom, this should make the merging process similar to the single tweezer transport

studied in chapter 3, where the Lewis-Riesenfeld boundary conditions on ρ(t) are trivially

satisfied. Our results for this are presented in fig. 4.4.

In fig. 4.4(i), we see that the Cs ground state occupation probability PCs exceeds 99 % for

merge times tf > 54.8 µs. This is less than half the value of tf required to achieve the same

PCs in section 4.2, but is still significantly larger than the tf = 20.7 µs threshold found for

the single tweezer transport using Lewis-Riesenfeld trajectories from section 3.3.

When repeating this simulation with a smaller timestep of ∆t = 1× 10−4 Th = 1.24 ns,

PCs and the equivalent ground state occupation probability for Rb PRb, take very similar

values to those in fig. 4.4(i), despite the much small Cs trap frequency deviations of

less than ±0.025 %. The results for this simulation have been included in section G.2 of

appendix G and table F.3 of appendix F.

These results indicate that the larger tf values required to obtain the same value for

PCs compared to the single tweezer transport case, are not a result of the suboptimal
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Figure 4.4: (i) Results obtained by moving the 938 nm optical tweezer using a non-rigid Lewis-Riesenfeld
trajectory while changing the 938 nm tweezer beam power so the frequency of the effective potential for
the Cs atom remains approximately constant. The solid, pale blue line gives the Cs atom ground state
occupation probability after the tweezer merge PCs, while the dashed navy line gives this for the Rb
atom PRb. The four coloured, vertical lines give the merge times tf corresponding to the trap frequencies
shown in (ii). (ii) How the Cs harmonic trap frequency ω changes during a selection of transports with
different values for tf . Here ωi is the initial trap frequency experienced by the Cs atom. The dashed blue
line shows how ω changes for tf = 12.4 µs (blue vertical line in (i)), the red dash-dotted line corresponds
to tf = 19.8 µs (red line in (i)), the green dash-double-dotted line to tf = 39.7 µs (green line in (i) and
the purple dotted line to tf = 148.9 µs.

trap frequency control. We believe that they instead result from a combination of the Cs

atom trap depth reduction, asymmetry of the effective potential during the merge and

errors in the trap frequency determined using eq. (4.1.5) due to the difference between

the tweezer and Cs potential minimum positions. These factors all contribute to making

our approximation of the effective potential as a harmonic potential less applicable. In

turn, this limits the applicability of the Lewis-Riesenfeld boundary condition results we

use hence resulting in these larger values for tf . We have included an animation visually

demonstrating this in section E.5.1. These effects will also contribute to the similarity

between the results obtained for the different trajectories we tested in section 4.2.

In fig. 4.4(i), we see that PRb < PCs for all values of tf we tested. This results in the

combined ground state occupation probability Pcombined = PCs×PRb only exceeding 99 %

for tf > 115.6 µs despite PCs exceeding this threshold for tf = 54.8 µs. This suggests that

it may now be more fruitful to develop methods to increase PRb instead of attempting to

overcome the limitations discussed above which contribute to lower values of PCs in the

tweezer merging process compared to the single tweezer transport results.
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Chapter 5

Concluding remarks
In this work, we have explored a number of methods to increase the probability of main-

taining both Cs and Rb atoms in their ground states after merging their optical tweezers.

We found that the single most effective method for achieving this is to compensate for the

deviation of the Cs potential minimum location from the position of the 938 nm optical

tweezer using eq. (4.1.2). Completing this compensation procedure allowed us to reduce

the merging time by more than half whilst maintaining a combined probability of greater

than 99 % that both atoms remain in their ground state after the merge.

Furthermore, we saw that there is only a small benefit in choosing a merging traject-

ory for the 938 nm tweezer such that only the Lewis-Riesenfeld boundary conditions for

rc(t) (eqs. (1.2.10), (1.2.12) and (1.2.14)) are satisfied. The Lewis-Riesenfeld boundary

conditions on ρ(t) (eqs. (1.2.11), (1.2.13) and (1.2.15)) can be satisfied by adjusting the

beam power of the 938 nm optical tweezer throughout the merging process. We found

that this allowed us to further reduce the merging time by 20 % whilst still exceeding

a combined 99 % ground state probability for both atoms. When applying this method,

the Cs ground state occupation probability following the merge becomes greater than the

equivalent probability for the Rb atom held in the stationary 814 nm tweezer.

Whilst we have identified improved methods to transport the Cs atom during the tweezer

merging process, the excitations of the Rb atom during the merge have now become a sig-

nificant factor limiting the merging time. A useful next step would be to establish methods

to increase the Rb ground state occupation probability whilst minimising the effect on

the equivalent Cs probability. A possible way to achieve this might involve decreasing the

Cs trap frequency during the merge whilst still satisfying the Lewis-Riesenfeld boundary

conditions on ρ(t). This could be implemented by decreasing the 938 nm tweezer beam

power near the end of the merge which should reduce the Rb motional excitations.

Only a single radial component of the asymmetric Gaussian tweezer potentials has been

considered in this work. As such, we cannot exclude the possibility that effects result-

ing from the axial and other radial potential component might significantly influence

the merging process. Expanding our simulations to incorporate these additional poten-

tial components (potentially utilising the short iterative Lanczos method described in

appendix D) would allow us to understand the effects of these.

We have assumed that we will be able to find an appropriate Feshbach resonance such

that the Cs and Rb interspecies interactions can be tuned to zero. It would be interesting

to consider the effects of non-zero interactions between the atoms on the merging process

and explore the possibility of using them to further optimise the merging process.

Overall, it is likely that implementing the techniques we describe in this report will allow

a significant reduction in the tweezer merging times in our Cs-Rb system. Additionally,

we believe that applying these same techniques in other optical tweezers systems utilising

different atoms is similarly likely to reduce the minimum merging times.
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Appendix A

Cooling
In order to cool atoms to their motional ground state, a number of different cooling

techniques are applied in sequence. In this appendix, we will explore the basic theory

behind Doppler cooling and Raman sideband cooling.

A.1 Doppler cooling
Doppler cooling was the first proposed method of cooling atoms using laser light. In this

process, atoms are exposed to laser radiation with a small red-detuning, such that when

the atoms move towards the radiation source the observed radiation frequency is Doppler

shifted to match that of an atomic transition. The resultant absorption events will reduce

the magnitude of the atoms momentum by the photon momentum ~k, where k = 2π
λ

is

the photon wavenumber, thus producing a damping effect.58 Counter-propagating laser

beams can be set-up along the three Cartesian axes to produce a damping effect in three

dimensions and provide some confinement due to the collective radiation pressure.59

For each absorption event, there will be a corresponding spontaneous emission at a later

time. This will result in the emission of a photon in a random direction, thus leading to

the heating effect described in section 1.1.2 and imposing a limit on the temperature to

which atoms can be cooled. This limit is called the Doppler temperature and can be found

to be

TD =
~Γ

2kB
, (A.1.1)

where Γ is the linewidth of the transition.27

For species to be appreciably cooled, they must repeatedly scatter photons. As such,

species cooled using this method usually have a high probability of returning to their

initial state by the spontaneous emission.58 Directly laser cooling molecules is thus difficult

since they have a much more complicated energy level structure than atoms so there is

usually a low probability that the molecule will return to its original state following the

spontaneous emission.10,11

A.2 Bound atoms
When atoms are bound within a trap, near monochromatic laser radiation may appear to

be comprised of more than one frequency in the frame of the trapped atom and the atomic

emission spectrum in the laboratory frame will similarly show multiple frequencies for each

transition. The origin of this effect can be seen using a classical model of a harmonically

bound, two-level atomic system as described by Wineland and Itano.17

The harmonic trap oscillation frequencies in each Cartesian direction {Ωi} where i ∈
{x, y, z} are assumed to be small in comparison to the atomic transition frequency ω0,

that is {Ωi} � ω0 ∀ i. Additionally, we will only consider the strong binding case where

Γ� {Ωi} ∀ i for Γ the natural linewidth of the transition.
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Without loss of generality, consider the atom oscillating with amplitude xA in the x

direction such that its position is

x = xA sin(Ωxt). (A.2.1)

Similarly, consider an incident electromagnetic wave along the x axis with wavenumber k

and frequency ω, where the electric field component is given by

E = E0 sin(kx− ωt), (A.2.2)

such that there is no phase difference between the atomic motion and the electric field

oscillations.

The resultant electric field experienced by the atom is thus

Eeff = E0 sin
(
kxA sin(Ωxt)− ωt

)
. (A.2.3)

By using

cos
(
x sin(θ)

)
=

∞∑
n=−∞

Jn(x) cos(nθ), (A.2.4)

sin
(
x sin(θ)

)
=

∞∑
n=−∞

Jn(x) sin(nθ), (A.2.5)

where the Jn(x) are Bessel functions of the first kind and n ∈ Z,60 we can expand Eeff in

terms of Bessel functions to yield

Eeff =
∞∑

n=−∞

Jn(kxA) sin
(
(nΩx − ω)t

)
. (A.2.6)

This demonstrates that the effective radiation field seen by the atom consists of discrete

modes at frequencies ω − nΩx where the amplitudes are given by Jn(kxA) as shown in

fig. A.1. The radiation emitted by the atom will have a similar spectrum, but with each

mode broadened by the natural lifetime Γ, thus in the case of weak binding Γ & {Ωi}
the individual spectral lines for n 6= 0 (known as sidebands) will not be distinguishable.

In the strong binding case, tuning the cooling laser frequency to the first resolved lower

sideband with frequency ω − Ωx can be used to cool the atom. This process works since,

on average, the photon emitted via spontaneous emission will be emitted at the central

transition frequency ω (or carrier frequency), hence leading to a net reduction in the

energy of the atom.17 By interpreting the sidebands as occurring due to the vibrational

modes of the atom ion the trap, this cooling process can be interpreted as an anti-Stokes

transition leading to the reduction in the vibrational energy of the atom.18

In this interpretation, when the atom is cooled to its motional ground state, the lower

sideband will disappear since there will be no lower vibrational levels. In the case that the

sidebands are well-resolved, the cooling radiation will now only interact weakly with the

ground-state atoms, thus reducing any subsequent heating due to spontaneous emission

processes. Such a state is known as a dark state.61
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ω − 3Ωx ω − 2Ωx ω − Ωx
ω ω + Ωx ω + 2Ωx ω + 3Ωx

I

Figure A.1: The effective radiation spectrum seen by a bound atom in a harmonic trap. The electric field
component of the incoming radiation is taken to be in-phase and collinear to the oscillation of the bound
atom as shown in eqs. (A.2.1) and (A.2.2) in the strong binding case of Γ � {Ωi} ∀ i. As depicted in
the figure, the atom sees the radiation at the discrete frequencies ω + nΩx, where ω is the electronic
transition frequency, Ωx is the trap frequency and n ∈ Z. The intensities I of these spectral lines are
given by the first kind of Bessel functions Jn(kxA)2 and here we have plotted the case of kxA = 1.5.
The atomic emission spectrum in the laboratory frame will look similar to the spectrum shown, however
each spectral line will be broadened with a full width at half maximum (FWHM) given by the natural
linewidth Γ for the transition.

A.3 Raman sideband cooling
Methods other than Doppler cooling must be used to cool atoms below the Doppler

temperature to their motional ground state. The first sub-Doppler cooling of neutral

atoms was achieved using polarisation gradient cooling (which we will not discuss here),

however this cooling method is instead limited by the photon recoil temperature62,63

TR =
~2k2

2kBM
, (A.3.1)

where M is the atomic mass and ~k is the momentum of the cooling photons. Raman

sideband cooling utilises a dark state (discussed in section A.2) to cool below the recoil

temperature.64

For neutral atoms in dipole traps, it is difficult to achieve the high trap strength required to

resolve the motional sidebands discussed in section A.2, so an alternative method is used.

Instead of relying on a large trap strength, a two-photon Raman transition is stimulated

between two stable or long-lived electronic states |2〉 ← |1〉 before optically pumping the

atom back to the initial state |1〉 via spontaneous emission from an additional state |3〉 as

shown in fig. A.2. The lifetime of the intermediate state |2〉 can be altered by controlling

the time at which the optical pumping occurs thus allowing the vibrational sidebands of

this state to be well-resolved.18,65

The stimulated Raman transition |2〉 ← |1〉 can be achieved using two counter-propagating

lasers with frequencies ωl1 and ωl2 such that

ωl1 − ωl2 = ω12 + ∆, (A.3.2)

where ω12 is the |2〉 ← |1〉 transition frequency and ∆ < 0 is a red-detuning. Changing

the magnitude of ∆ and the lifetime of |2〉 allows specific vibrational transitions to be

targeted to optimise the cooling process.64,65

For this cooling technique to be successful, the optical pumping step must preserve the

lowered vibrational state achieved using the |2〉 ← |1〉 Raman transition. The probability
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|3〉

|2〉

|1〉

ωl1
ωl2

−~∆
~ω12

ωp

E

Figure A.2: Electronic transitions in Raman sideband cooling. Arrows represent photons being ab-
sorbed/emitted and horizontal lines represent atomic states. In particular, the dashed horizontal line
is the virtual Raman state and the groups of horizontal lines next to the electronic state labels |1〉 and
|2〉 represent different vibrational states of the trap when the atom is in these electronic states. In the
cooling process, the atom is initially in a non-ground vibrational state within |1〉. Counter-propagating
laser beams at frequencies ωl1 and ωl2 cause the two-photon, anti-Stokes Raman transition into a lower
vibrational state of |2〉 which is selected using the detuning ∆ of ωl1 − ωl2 from the Stokes scattering
frequency ω12. At a later time, radiation of frequency ωp is used to optically pump the atom back to a
lower vibrational state of |1〉 via the spontaneous emission from |3〉, hence leading to a cooling effect.

of vibrational excitation during the optical pumping process is proportional to

pext = (2n̄+ 1)
kBTR
~Ω

= (2n̄+ 1)η2, (A.3.3)

where n̄ is the average vibrational quantum number, TR is the recoil temperature defined in

eq. (A.3.1) for the pumping photons, Ω is the relevant trap frequency and η =
√
kBTR/~Ω

is known as the Lamb-Dicke parameter.18,66 Due to this, atoms should initially be cooled

into the Lamb-Dicke regime (where η � 1) using other cooling techniques before Raman

sideband cooling is used.

The ground motional state of |1〉 can be made a dark state by choosing ωl1, ωl2 and the

optical pumping transition frequency ωp such that they are well-separated from the reson-

ance frequencies for likely electronic transitions from |1〉.64 This allows the accumulation

of a significant motional ground state atomic population and populations of around 90 %

have been reported.66,67

A.4 Cooling atoms in optical dipole traps
Due to the small trap depths of optical dipole traps and the heating processes described in

section 1.1.2, atoms in optical dipole traps must be continually cooled for trapping to be

maintained. This is complicated by the fact that it is not possible to apply near-resonant

Doppler cooling radiation at the same time as the optical dipole trapping radiation since

it will cause increased dipole heating. The AC Stark shift in the atomic energy levels

caused by the trapping radiation will also greatly reduce the cooling efficiency.29,68 These

problems can be avoided by alternating between applying the trapping radiation and

counter-propagating cooling lasers.23 In this procedure, loss is minimised since the radi-

ation pressure of the cooling beams (arising due to the scattering force) keeps the atoms

sufficiently confined whilst the trapping beams are switched off.59

Naturally, this issue does not affect the Raman sideband cooling technique described in
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section A.3 which relies on atoms being confined within optical tweezers. This thus allows

the continual cooling of the atoms via Raman sideband cooling whilst they are kept

isolated in their own tweezers. However, after the tweezers have been merged and both

atoms occupy the same tweezer Raman sideband cooling cannot be easily performed. This

is since it will stimulate light-assisted collisions and lead to loss by the process discussed

in appendix C.
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Appendix B

Dressed atom derivation of the dipole

force
In section 1.1.1, the properties of the dipole force were derived from a conservative poten-

tial by approximating the atom as a simple harmonic oscillator. From a more fundamental

perspective, the origins of the dipole force can be explored by utilising a dressed atom

approach (where the eigenstates of the combined atom and radiation field system are

considered). In this appendix, the properties of the dipole force will be derived by broadly

following the derivation presented by Dalibard and Cohen-Tannoudji.34

B.1 Derivation

Consider the two level atomic system with ground state |g〉 and excited state |e〉 separ-

ated by an energy ~ω0 within a single mode radiation field of frequency ω, as shown in

fig. B.1.

|e〉

~ω0

~ω

−~∆

|g〉

E

Figure B.1: Energy levels of a bare two-level atom. ω0 is the transition frequency between the two atomic
levels, ω is the frequency of the radiation field and ∆ = ω−ω0 is the detuning of the radiation field from
the transition frequency.

The Hamiltonian of such a system is given by

Ĥ = ĤA + ĤF + Ĥint, (B.1.1)

where ĤA is the Hamiltonian the atom, ĤF is the Hamiltonian of the field and Ĥint is the

atom-field interaction term. By evaluating at a single point r we can neglect the atomic

kinetic energy term to give

ĤA = ~ω0 |e〉〈e| = ~ω0σ̂+σ̂−, (B.1.2)

by defining the raising operator σ̂+ = |e〉〈g| and the lowering operator σ̂− = σ̂†+ where q̂†

denotes acting with the adjoint operation on the operator q̂.

By setting the vacuum zero point energy to zero, the single mode field Hamiltonian can

be given by

ĤF = ~ωâ†â, (B.1.3)

where â and â† are the field mode annihilation and creation operators respectively. These

are defined by â† |n〉 =
√
n+ 1 |n+ 1〉 and â |n+ 1〉 =

√
n+ 1 |n〉 where |n〉 is the n

photon number state for the radiation field.

33



In the electric dipole approximation the interaction term can be written as69

Ĥint = d̂ · Ê(t), (B.1.4)

where d̂ = er is the electric dipole operator and Ê(t) = ~E(r)â + ~E∗(r)â† is the electric

field operator for a single mode field where ~E(r) ∈ C3.

Using 〈e|d̂|e〉 = 〈g|d̂|g〉 = 0, we can rewrite

d̂ = ~µσ̂− + (~µσ̂−)† = ~µ(σ̂+ + σ̂−), (B.1.5)

for ~µ ∈ R3. So, we have

Ĥint =
(
~µ(σ̂+ + σ̂−)

)
·
(
~E â+ ~E∗â†

)
. (B.1.6)

By considering the time evolution of these operators in the interaction picture and apply-

ing the rotating wave approximation to remove the quickly oscillating terms, this can be

simplified to give

Ĥint = ~µ ·
(
~E∗σ̂−â† + ~E σ̂+â

)
. (B.1.7)

Putting eqs. (B.1.2), (B.1.3) and (B.1.7) together yields the Hamiltonian

Ĥ = ~(ω −∆)σ̂+σ̂− + ~ωâ†â+ ~µ ·
(
~E∗σ̂−â† + ~E σ̂+â

)
, (B.1.8)

where ∆ = ω− ω0 is the detuning of the field radiation from the atomic resonance.

Considering the basis states |g〉 ⊗ |n+ 1〉 = |g, n+ 1〉 and |e〉 ⊗ |n〉 = |e, n〉, it is clear

that the matrix element due to Ĥint is only non-zero for the off-diagonal terms

〈e, n|Ĥint|g, n+ 1〉 =
√
n+ 1

(
~µ · ~E

)
=

~
2
ωr(r) exp

(
iφ(r)

)
, (B.1.9)

for ωr(r) the Rabi frequency when ∆ = 0 and φ(r) some phase. This relation can be

determined by solving the Schrödinger equation for the basis state occupation probabilities

in the case of ∆ = 0.

Using this result, Ĥ in terms of the basis states can be represented in matrix form as

Ĥ = ~

(
(n+ 1)ω 1

2
ωre

−iφ

1
2
ωre

iφ (n+ 1)ω −∆

)
. (B.1.10)

By solving for the eigenvalues of this matrix, the energies of the eigenstates are found to

be

En,± = ~

(
(n+ 1)ω − ∆

2
± Ω2(r)

2

)
, (B.1.11)

where

Ω(r) =
√
ω2
r(r) + ∆2, (B.1.12)

is the Rabi frequency.
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For the treatment above, the radiation field is assumed to initially be in a coherent state,

hence the photons are distributed according to Poissonian statistics. It is then assumed

that the standard deviation of the photon distribution ∆n satisfies ∆n � n, thus n can

be taken to have a definite value.

In the case where the coupling between the atom and field is zero (~µ = 0), the Hamiltonian

eigenstates are equivalent to the states |g, n+ 1〉 and |e, n〉 (i.e. the atomic states in the

presence of an n or n + 1 photon field) with the energy difference between these states

given by ~|∆| as shown in fig. B.2a. These are the bare states. For a non-zero atom-field

coupling, the eigenstates |n,−〉 and |n,+〉 (the dressed states) are described by some

linear superposition of the bare states with the difference in energy between these states

given by ~Ω(r) as shown in fig. B.2b. Where the detuning is zero, the dressed states will

remain non-degenerate, however the bare states will be degenerate.

|e, n〉

−~∆

|g, n+ 1〉
(a)

|n,+〉

|n,−〉

~Ω(r)

(b)

E

Figure B.2: Energy of combined atom-field system in cases of zero and non-zero coupling. If the atom-field
coupling is zero (~µ = 0) the eigenstates are the bare states |g, n+ 1〉 and |e, n〉 which differ in energy by
the detuning ~|∆| as shown for the ∆ < 0 case in (a). For a non-zero atom-field coupling, the dressed
states |n,−〉 and |n,+〉 are the system eigenstates which have a non-trivial dependence on the bare states
and differ in energy by the Rabi frequency ~Ω(r) as shown in (b).

As demonstrated in eqs. (B.1.9), (B.1.11) and (B.1.12), the magnitude of the energy

splitting will depend on the atom-field coupling. In a radiation field where the intensity

is non-uniform in space, this will result in the dressed state energies being dependent on

the spatial position of the atom. This is illustrated in fig. B.3 in the case where an atom

is moved across a Gaussian laser beam.

|n,+〉

~Ω(r)

|n,−〉

E

r∣∣∣~E ∣∣∣ ≈ 0
∣∣∣~E ∣∣∣ > 0

∣∣∣~E ∣∣∣ ≈ 0

Figure B.3: Dressed state energy levels across a Gaussian laser beam. As the atom transits a laser beam

with intensity
∣∣∣~E ∣∣∣2 following a Gaussian profile, the energies of the dressed states |n,+〉 and |n,−〉, given

by eq. (B.1.11) follow the radiation intensity profile.
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It can be shown that the mean dipole force potential experienced by a stationary atom

can be written as34

U = Π+E+ + Π−E−, (B.1.13)

where Π+ and Π− are the equilibrium populations of the |n,+〉 and |n,−〉 states respect-

ively while E+ = 1
2
(En,+−En,−) = 1

2
~Ω(r) and E− = −E+ = −1

2
~Ω(r) are the differences

of the energies of these states from the mean energy 1
2
(En,+ +En,−) for each fixed n.

The equilibrium populations Π± depend on the rates for spontaneous emission from the

|n,+〉 and |n,−〉 states to the |n− 1,+〉 and |n− 1,−〉 states. Naturally, these will depend

on the relative contributions of the |e, n〉 and |g, n+ 1〉 bare states to each dressed states

since spontaneous emission is only possible from the excited atomic state. Since the lower

energy bare state will have a greater contribution to |n,−〉 (and vice-versa for |n,+〉) the

sign of the detuning ∆ will dictate the relative magnitudes of the Π± as it gives the energy

ordering of the bare states.

For a red detuned trap (∆ < 0), |g, n+ 1〉 will be lower in energy than |e, n〉, thus Π− > Π+

due to the greater rate of spontaneous emission from the |n,+〉 compared to |n,−〉. Using

eq. (B.1.13), this will thus result in an attractive potential within the radiation beam. In

contrast, a blue detuned trap (∆ > 0) will instead result in a repulsive potential due to

the greater population of the |n,+〉 states compared to the |n,−〉 states (Π+ > Π−) since

the |e, n〉 bare states will be lower in energy than the |g, n+ 1〉 states. This describes the

same trap behaviour as that found by modelling the atom as a simple harmonic oscillator

as described in section 1.1.1 with eq. (B.1.13) analogous to eq. (1.1.1).

B.2 Dipole force heating
In the previous section, we have seen in that for a stationary atom, the mean dipole force

is dependent on the steady state populations of the dressed states. The instantaneous

dipole force will similarly depend on the instantaneous system state with the sign of the

force dependent on if a dressed state of type |n,+〉 or |m,−〉, for n,m ∈ N, is occupied.

Transitions between these two classes of dressed state will hence lead to fluctuations in

the sign of the dipole force and a heating effect.34
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Appendix C

Trapping single atoms
Optical dipole traps with a very small volume and high radiation intensity can be con-

structed using tightly focussed Gaussian radiation beams. Traps of this type can be used

to confine single atoms when the beam waist is of similar order to the wavelength of the

trapping light and they are loaded using a MOT containing a low density of atoms.16 This

is achieved since the small trap volume establishes a collisional blockade meaning that

there are two possible outcomes when an atom enters the trap region: if the trap is empty,

the incident atom is trapped, otherwise it is involved in a two-body collision which causes

both atoms to escape from the trap.70 This process would lead to a loading efficiency

of 50 %, however other collisional processes may also occur when applying red-detuned

polarisation gradient cooling during the loading. This can lead to a higher mean loading

efficiency of 64(1) %.71

|g〉+ |e〉

|g〉+ |g〉

~∆b

~ω0

E

r

Figure C.1: Illustration of using light-assisted collisions
to enhance the probability of loading a single atom in
an optical dipole trap. The lower, mostly horizontal,
line labelled |g〉 + |g〉, represents the nearly constant
interatomic interaction potential for two ground state
atoms while the two upper lines, labelled with |g〉+ |e〉,
show the possible potentials when one atom is in an
excited electronic state. These potentials illustrate how
the combined energy of the two atoms E varies with the
interatomic spacing r. When light which is red-detuned
from the transition frequency ω0 is used to excite an
atom (the red wavy line), the attractive interatomic po-
tential results causing both atoms to gain considerable
kinetic energy which results in the loss of both atoms
from the trap. Alternatively, if blue-detuned light, with
detuning ∆b, excites one of the atoms the repulsive po-
tential results. In this case, the maximum kinetic energy
increase is given by ~∆b which can be chosen to be of
similar magnitude to the trap depth giving an increased
probability that exactly one atoms will escape from the
trap. Adapted from the figure by Grünzweig et al..72

During the tweezer loading, light-assisted collisions occur between the atoms. In such

collisions, one atom undergoes a transition into an excited state thus altering the in-

teratomic potential between the atoms. By choosing the frequency and intensity of the

transition inducing light, the probability that certain interaction potentials will develop

can be altered. For example, if blue-detuned light is used, a repulsive interatomic potential

is more likely to develop and the kinetic energy transferred within the inelastic collision

between the atoms can be controlled using the detuning from the transition frequency as

shown in fig. C.1. By making probable kinetic energy transfer in the collision of a similar

magnitude to the trap depth, the probability that only a single atom will escape the trap

can be increased. Such a technique has been used to increase the single-atom loading

probability of 87Rb atoms to 90 %.73
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Appendix D

Numerical time evolution methods
The time evolution of a wave function

∣∣Ψ(~r, t)
〉

under a Hamiltonian Ĥ(~r, t) is governed

by the Schrödinger equation

i~
d

dt

∣∣Ψ(~r, t)
〉

= Ĥ(~r, t)
∣∣Ψ(~r, t)

〉
. (D.0.1)

This can be recast into the Heisenberg picture were the time evolution between some

initial time ti and a final time tf is given by∣∣Ψ(tf )
〉

= Û(tf , ti)
∣∣Ψ(ti)

〉
where Û(tf , ti) := exp

(
− i
~

∫ tf

ti

Ĥ(t′) dt′

)
.

(D.0.2)

We then split (ti, tf ) into N subintervals of length ∆t =
tf−ti
N

with t0 = ti and tN = tf .

For N sufficiently large Ĥ(tk+1) ≈ Ĥ(tk) for k ∈ [0, N − 1], so49,50

Û(tf , ti) ≈
N−1∏
k=0

exp

(
− i
~
Ĥ(tk)∆t

)
. (D.0.3)

Numerical methods are then used to approximate Û(tk+1, tk) which is then applied to

the wave function
∣∣Ψ(~r, tk)

〉
to determine

∣∣Ψ(~r, tk+1)
〉

as shown in eq. (D.0.2). Repeated

application allows the determination of
∣∣Ψ(tf )

〉
from

∣∣Ψ(ti)
〉
.

D.1 Split-step method

In the split-step (or split operator) method, we take Ĥ(~r, tk) = T̂ + V̂ (~r, tk) where T̂

and V̂ are the kinetic and potential parts of the Hamiltonian respectively. Using this, we

write49,50

Û(tk+1, tk) = exp

(
− i
~

(
T̂ + V̂ (~r, tk)

)
∆t

)
= exp

(
− i
~
T̂∆t

)
exp

(
− i
~
V̂ (~r, tk)∆t

)
+O

(
∆t2
)
.

(D.1.1)

Here the error term O
(
∆t2
)

results from the non-commutativity of T̂ and V̂ (~r, tk). This

error term can be made third order in time by taking the Strang operator splitting49,74

Û(tk+1, tk) =

[
exp

(
− i

2~
V̂ (~r, tk)∆t

)
exp

(
− i

2~
T̂∆t

)]

·

[
exp

(
− i

2~
T̂∆t

)
exp

(
− i

2~
V̂ (~r, tk)∆t

)]
+O

(
∆t3
)

= exp

(
− i

2~
V̂ (~r, tk)∆t

)
exp

(
− i
~
T̂∆t

)
exp

(
− i

2~
V̂ (~r, tk)∆t

)
+O

(
∆t3
)
.

(D.1.2)
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With this form of Û(tk+1, tk), it is possible to use fast Fourier transforms (FFTs)47 to

quickly and easily transform between configuration space, where V̂ (~r, tk) has a diagonal

representation, and momentum space, where T̂ has a diagonal representation. We illus-

trate this process in fig. D.1 where each application of i
2~ V̂ (~r, tk) acts as a ‘half step’ in

configuration space while application of exp
(
− i

~ T̂∆t
)

in momentum space is a ‘full step’.

Figure D.1: A diagramtic illustration of the prodcedure followed when completing time evolution with
the split-step method. Here ‘FFT’ refers to applying fast Fourier transforms and the ‘steps’ refer to
application of the exponentiated operations from eq. (D.1.2).

The split-step method is unconditionally stable,50 but requires that the Hamiltonian can

be split into separate kinetic and potential terms.

D.2 Lanczos method
The short iterative Lanczos method instead works by recasting the initial wave function

|Ψ〉 :=
∣∣~r,Ψ(t)

〉
in terms of an orthonormal finite Krylov basis

{
|φi〉
}

of size n where50,53,54

span
{
|φi〉
}

= span
{
|φ1〉 , Ĥ |φ1〉 , Ĥ2 |φ1〉 , ..., Ĥn |φ1〉

}
, (D.2.1)

for |φ1〉 := |Ψ〉√
〈Ψ|Ψ〉

. Since this basis is generated using the Hamiltonian, it should be able to

describe the immediate time evolution of |Ψ〉.49,50 To construct
{
|φi〉
}

we take49,52,54

|ψ2〉 := Ĥ |φ1〉 (D.2.2)

〈φ2|ψ2〉 |φ2〉 = |ψ2〉 − 〈φ1|ψ2〉 |φ1〉 (D.2.3)

|ψ3〉 := Ĥ |φ2〉 (D.2.4)

〈φ3|ψ3〉 |φ3〉 = |ψ3〉 − 〈φ2|ψ3〉 |φ2〉 − 〈φ1|ψ3〉 |φ1〉 . (D.2.5)

Now note that by Hermiticity

〈φ1|ψ3〉 = 〈φ1|Ĥ|φ2〉 = 〈φ2|Ĥ|φ1〉 = 〈φ2|ψ2〉 . (D.2.6)

Using eq. (D.2.3), it is clear that 〈φ3|ψ2〉 = 0, thus when constructing |φ4〉 we see

|ψ4〉 := Ĥ |φ3〉 (D.2.7)

〈φ4|ψ4〉 |φ4〉 = |ψ4〉 − 〈φ3|ψ4〉 |φ3〉 − 〈φ2|ψ4〉 |φ2〉 − 〈φ1|ψ4〉 |φ1〉 , (D.2.8)
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but from the Hermiticity shown in eq. (D.2.6) 〈φ1|ψ4〉 = 〈φ3|ψ2〉 = 0. This follows in

general and we find that for k ∈ Z ∩ [3, n]49,52,54

βk |φk〉 = Ĥ |φk−1〉 − αk−1 |φk−1〉 − βk−2 |φk−2〉
where αk := 〈φk|Ĥ|φk〉

and βk := 〈φk|Ĥ|φk+1〉
(D.2.9)

This gives the tridiagonal representation of Ĥ in the Krylov basis
{
|φi〉
}

of size n as

Hn =



α1 β1

β1 α2 β2

β2
. . . . . .
. . . αn−2 βn−2

βn−2 αn−1 βn−1

βn−1 αn


. (D.2.10)

By determining the eigenvalues λk and eigenfunctions |λk〉 of Hn we can then evolve |Ψ〉
in time to obtain49,54

∣∣Ψ(~r, t+ ∆t)
〉

=
∑
k

exp

(
− i
~
λk∆t

)〈
λk
∣∣Ψ(~r, t)

〉
|λk〉 . (D.2.11)

Within the short iterative Lanczos method, the same Krylov basis is used to propagate the

wave function a small number of time steps without loss of accuracy.49,50,54 Although the

tridiagonalisation of the Hamiltonian and subsequent determination of the eigenfunctions

and eigenvalues is not very computationally efficient, the fact that this does not need

to be completed for every timestep compensates for this. For more complex simulations,

such as simulating tweezer merging in more than one dimension, this may make the short

iterative Lanczos method more efficient than the split-step method.

An animation roughly demonstrating how this Lanczos method can be used to give the

time evolution of a Gaussian wave packet in a harmonic potential can be found at

https://sjmwhite.com/durham/msci-project/anim/1/harmonic/lanczos.mp4
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Appendix E

Animations
In this chapter we include URL links to a number of animations created during our

simulations. These help to provide additional insight into the processes we observe and

aid with the visualisation of the results which we present in our main report.

These animations are predominately presented using the simulation units we describe in

section 2.2.

E.1 Linear transport in a harmonic potential
In this section, we include links to animations showing the motion of the Cs wave function

from the wave function’s frame when it is transported 82 ah = 2.5 µm in a harmonic

potential using a linear trajectory.

E.1.1 Integer harmonic oscillation period

In these animations, the transport time is tf = 2.0 Th (twice the oscillation period in

the potential). As predicted in eq. (3.1.3), we thus see a faithful transport with minimal

excitations at the end of the motion.

Transport in frame of the wave function:

https://sjmwhite.com/durham/msci-project/anim/1/harmonic/lin/2-0_wf.mp4

Transport in the frame of the 938 nm optical tweezer:

https://sjmwhite.com/durham/msci-project/anim/1/harmonic/lin/2-0_twzr.mp4

E.1.2 Half-integer harmonic oscillation period

In these animations, the transport time is tf = 2.5 Th (two and a half times the oscillation

period in the potential). As predicted in section 3.1.1, we see that the wave function

becomes motionally excited at the end of the motion.

Transport in frame of the wave function:

https://sjmwhite.com/durham/msci-project/anim/1/harmonic/lin/2-5_wf.mp4

Transport in the frame of the 938 nm optical tweezer:

https://sjmwhite.com/durham/msci-project/anim/1/harmonic/lin/2-5_twzr.mp4

E.2 Linear transport in 938 nm tweezer
The animations in this section are equivalent to those given in section E.1, except the

transports are now completed using the 938 nm optical tweezer potential. These are ex-

amples of the simulations used to obtain the data presented in fig. 3.2.

E.2.1 Integer harmonic oscillation period

Animations for tf = 2.0 Th.
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Transport in frame of the wave function:

https://sjmwhite.com/durham/msci-project/anim/1/gaussian/lin/2-0_wf.mp4

Transport in the frame of the 938 nm optical tweezer:

https://sjmwhite.com/durham/msci-project/anim/1/gaussian/lin/2-0_twzr.mp4

E.2.2 Half-integer harmonic oscillation period

Animations for tf = 2.5 Th.

Transport in frame of the wave function:

https://sjmwhite.com/durham/msci-project/anim/1/gaussian/lin/2-5_wf.mp4

Transport in the frame of the 938 nm optical tweezer:

https://sjmwhite.com/durham/msci-project/anim/1/gaussian/lin/2-5_twzr.mp4

E.3 Transport with minimum-jerk trajectory in 938 nm

tweezer
These animations show the transport of the Cs atom in the 938 nm optical tweezer using

the minimum-jerk trajectory.

E.3.1 Initial probability maximum

These animations show that the initial ground state occupation probability maximum

at tf = 1.89 Th results since the transport time is just the right length such that the Cs

atom completes precisely one oscillation during the transport. The subsequent probability

maxima result from similar conditions being met.

Transport in frame of the wave function:

https://sjmwhite.com/durham/msci-project/anim/1/gaussian/mj/1-89_wf.mp4

Transport in the frame of the 938 nm optical tweezer:

https://sjmwhite.com/durham/msci-project/anim/1/gaussian/mj/1-89_twzr.mp4

E.4 Transport with Lewis-Riesenfeld trajectories in

938 nm tweezer
Here we transport the single Cs atom in the 938 nm tweezer using the Lewis-Riesenfeld

trajectories we described in section 3.3. Here, the trajectory is tailored such that the

atom essentially completes a single oscillation in the tweezer potential irrespective of the

transport duration.

E.4.1 Long transport times

Here we present animations for transport using the Lewis-Riesenfeld trajectories where

the harmonic approximation of the 938 Th hold to a good approximation.
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tf = 2.0 Th

Transport in frame of the wave function:

https://sjmwhite.com/durham/msci-project/anim/1/gaussian/lr/2-0_wf.mp4

Transport in the frame of the 938 nm optical tweezer:

https://sjmwhite.com/durham/msci-project/anim/1/gaussian/lr/2-0_twzr.mp4

tf = 3.3 Th

Transport in frame of the wave function:

https://sjmwhite.com/durham/msci-project/anim/1/gaussian/lr/3-3_wf.mp4

Transport in the frame of the 938 nm optical tweezer:

https://sjmwhite.com/durham/msci-project/anim/1/gaussian/lr/3-3_twzr.mp4

E.4.2 Short transport times

The anharmonicity of the Gaussian potential means that the Lewis-Riesenfeld trajectories

become less well matched to the transport motion for short transport times where tf .
1.8 Th. This can be seen in the sub-optimal transport shown in the following animations

for tf = 1.1 Th.

Transport in frame of the wave function:

https://sjmwhite.com/durham/msci-project/anim/1/gaussian/lr/1-1_wf.mp4

Transport in the frame of the 938 nm optical tweezer:

https://sjmwhite.com/durham/msci-project/anim/1/gaussian/lr/1-1_twzr.mp4

E.5 Tweezer merging
These animations demonstrate the tweezer merging process where the 938 nm tweezer is

moved with a (compensated) linear trajectory for a merge taking 24.8 µs = 2.0 Th.

E.5.1 Effective potentials

These animations demonstrate how the effective potentials for each atom change during

the merging process. We show the Gaussian potentials resultant from each tweezer, the

effective potential and (in the case of the Cs potential) the harmonic approximation to the

potential that we use. The potential depths are plotted using the initial Cs trap frequency

as ω.

Cs effective potential:

https://sjmwhite.com/durham/msci-project/anim/2/lin-c/2-0_cs_eff.mp4

From this animation, it is clear that the harmonic approximation around the Cs potential

minimum becomes less accurate towards the end of the merging process as the effect-

ive potential becomes shallower and asymmetric. The deviation between the potential
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minimum and tweezer locations may also make the determination of the harmonic trap

frequency using eq. (4.1.5) less accurate here as explained in section 4.1.2.

Rb effective potential:

https://sjmwhite.com/durham/msci-project/anim/2/lin-c/2-0_rb_eff.mp4

Please note that the initial offset of the effective potential is an artefact resulting from

the method we have used to position the effective potential in this animation. It has no

origin within our numerical simulations or any physical basis.

E.5.2 Atomic behaviour

These animations show how the atomic wave functions behave during the merging process.

This animations are taken from the frames of the 938 nm and 814 nm optical tweezers,

thus clearly show the deviations of the potential minima from the tweezer locations during

the merging process.

The units of energy given utilise the effective harmonic trap frequency at each timestep

in the simulation ωinstant which is calculated using eq. (4.1.5).

Cs wave function motion:

https://sjmwhite.com/durham/msci-project/anim/2/lin-c/2-0_cs_twzr.mp4

Rb wave function motion:

https://sjmwhite.com/durham/msci-project/anim/2/lin-c/2-0_rb_twzr.mp4
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Appendix F

Tabulated results
In this chapter we include tables illustrating the transport/merge times at which particular

ground state occupation probabilities were exceeded in our simulations for a number of

different trajectories.

F.1 One tweezer transport
The results in this section relate to transporting a single Cs atom a distance of d = 82 ah =

2.5 µm in the isolated 938 nm optical tweezer. This is fully discussed in chapter 3.

Trajectory Transport time required to exceed given value of PCs (µs)

30 % 50 % 70 % 90 % 99 % 99.5 % 99.9 %

Linear 205.2 >250 >250 >250 >250 >250 >250

Minimum-jerk 33.0 33.7 43.9 55.0 81.1 92.8 132.0

Lewis-Riesenfeld 16.5 17.0 17.7 18.9 20.7 21.2 22.0

Table F.1: The minimum transport times tf required to achieve different ground state occupation prob-
abilities PCs for the transport of a Cs atom in an isolated 938 nm tweezer. For all values of tf greater
than those give, PCs does not fall below the specified value in the table header.

F.2 Tweezer merging
The tabulated results in this section relate to completing the merging process between

the 938 nm tweezer initially containing a single Cs atom and the 814 nm tweezer which

initially contains a Rb atom.

We first present results corresponding to the figures we show in chapter 4 within table F.2.

Trajectory Merge time required to exceed given probability (µs)

PCs PRb Pcombined

50 % 90 % 99 % 50 % 90 % 99 % 50 % 90 % 99 %

Minimum-jerk 91.3 117.1 147.1 57.1 73.9 99.5 92.0 117.4 150.1

Rigid L-R 87.8 115.9 146.1 55.8 73.2 99.0 88.6 116.4 149.4

Non-rigid L-R 71.5 102.5 144.4 56.6 74.9 98.2 73.9 104.5 150.4

Full L-R 15 31.5 54.8 33.0 54.6 114.4 33.7 56.3 115.6

Table F.2: The minimum times required to merge the 938 nm and 814 nm optical tweezers and obtain the
given ground state occupation probabilities (GSOPs). Here, PCs is the GSOP for the Cs atom, PRb is the
GSOP for Rb, Pcombined = PCs × PRb and ‘L-R’ stands for Lewis-Riesenfeld. The ‘Full L-R’ trajectory is
the one described in section 4.3 where the 938 nm tweezer power is adjusted during the merging process.

The results in this table correspond to the figures that we have included in appendix G.

We have not included any results for merges completed using a linear trajectory since
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it takes a merge time of longer than 370 µs before a 90 % Cs ground state occupation

probability is reached (see fig. G.5).

Trajectory Merge time required to exceed given probability (µs)

PCs PRb Pcombined

50 % 90 % 99 % 50 % 90 % 99 % 50 % 90 % 99 %

Minimum-jerk 208.9 293.3 >370 37.2 51.1 71.2 209.1 294.0 >370

Rigid L-R 201.7 287.3 >370 36.0 50.9 71.7 201.7 288.3 >370

Non-rigid L-R 165.0 243.1 355.8 37.7 56.3 78.2 165.0 243.9 >370

Full L-R (small ∆t) 14.6 33.0 54.3 34.0 57.0 >62 35.0 60 >62

Table F.3: The minimum times required to merge the 938 nm and 814 nm optical tweezers and obtain
the given ground state occupation probabilities (GSOPs). Here, PCs is the GSOP for the Cs atom, PRb

is the GSOP for Rb, Pcombined = PCs×PRb and ‘L-R’ stands for Lewis-Riesenfeld. All of the trajectories
except the ‘Full L-R’ one were completed without trajectory compensation using eq. (4.1.2). The ‘Full
L-R’ trajectory was completed under identical simulation conditions to those for the trajectory described
in section 4.3, except that the timestep was decreased to ∆t = 1× 10−4 Th = 1.24 ns.
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Appendix G

Supplementary merging results
In this appendix we have included additional results which further support our discussions

in the main report text. All of the result we include relate to merging the 938 nm and

814 nm optical tweezers in a similar fashion to that described in chapter 4.

G.1 Uncompensated trajectory results
The results in this section were collected when simulating the tweezer merging process

without using eq. (4.1.2) to move the potential minima using our desired trajectories.

Thus we move the optical tweezers using the specified trajectory.

G.1.1 Minimum-jerk trajectory

Figure G.1: Results from uncompensated tweezer merging using the minimum-jerk trajectory.
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G.1.2 Rigid Lewis-Riesenfeld trajectories

Figure G.2: Results from uncompensated tweezer merging using the rigid Lewis-Riesenfeld trajectories.

G.1.3 Non-rigid Lewis-Riesenfeld trajectories

Figure G.3: Results from uncompensated tweezer merging using the non-rigid Lewis-Riesenfeld traject-
ories.
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G.2 Frequency control with smaller timestep
These results where obtained using the same conditions as those used for fig. 4.4, but

with a timestep one hundred times smaller of ∆t = 1× 10−4 Th = 1.24 ns. These results

demonstrate near identical behaviour for the ground state occupation probabilities as

fig. 4.4 even though the variations in the trap frequency are much smaller.

Figure G.4: (i) Results obtained by attempting to keep the trap frequency constant during the tweezer
merge with a timestep ∆t = 1× 10−4 Th = 1.24 ns. The solid pale blue line shows the probability of
ground state occupation for the Cs atom, while the dashed navy line shows this for the Rb atom. (ii)
How the Cs harmonic trap frequency changes during the merge where ωi is the initial trap frequency.

G.3 Linear trajectory
Figure G.5 shows the results for a linear merge between the two tweezers using a tweezer

trajectory calculated using eq. (4.1.2). We have not included these results in the main

report text since this merging requires very long merging times in order to obtain reliably

high Cs ground state occupation probabilities.
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Figure G.5: Results from merging the two optical tweezers using a linear trajectory with the 938 nm
tweezer position compensated using eq. (4.1.2).
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Appendix H

Simulation code
The Julia code written to implement our simulations is publicly available on GitHub. This

is split into the three different standalone packages described in the sections below. The

code which interfaces with these packages to construct our simulations is not yet publicly

available.

H.1 QuantumSimulation
The QuantumSimulation package contain code implementing the split step and short it-

erative Lanczos numerical simulation methods. Additionally, it contains definitions for

special data types used for quantum mechanical objects and recipes for plotting the in-

formation associated with them. We have also included functions in this package for

completing the trajectory translation described in section 4.1.1 and constructing the po-

tentials used.

https://github.com/sw104/QuantumSimulation.jl

H.2 UnitfulAtomicHarmonic

The UnitfulAtomicHarmonic package extends the (third party) Unitful.jl package to allow

easy implementation of the simulation units described in section 2.2 and facilitate easy

conversions between unit systems.

https://github.com/sw104/UnitfulAtomicHarmonic.jl

H.3 HarmonicTrapTrajectories
Our HarmonicTrapTrajectories package is a small package which helps with the imple-

mentation of the trajectories we used in this project.

https://github.com/sw104/HarmonicTrapTrajectories.jl

51

https://github.com/sw104/QuantumSimulation.jl
https://github.com/sw104/QuantumSimulation.jl
https://github.com/sw104/UnitfulAtomicHarmonic.jl
https://github.com/PainterQubits/Unitful.jl
https://github.com/sw104/UnitfulAtomicHarmonic.jl
https://github.com/sw104/HarmonicTrapTrajectories.jl
https://github.com/sw104/HarmonicTrapTrajectories.jl

	Introduction
	Background
	Optical dipole traps
	The dipole force
	Heating

	Fast adiabatic transport
	Inverse engineering using Lewis-Riesenfeld invariants


	Simulation construction
	Optical Tweezers
	Harmonic potential approximation
	Trapping potential
	Experimentally determined parameters

	Units
	Numerical simulation methods

	One tweezer transport
	Linear trajectory
	Predictions for a harmonic potential
	Tweezer potential results

	Minimum-jerk trajectory
	Lewis-Riesenfeld trajectories
	Polynomial ansatz
	Application to single tweezer transport


	Merging two tweezers
	Effective potential considerations
	Trajectory compensation
	Harmonic trap frequencies

	Minimum-jerk and Lewis-Riesenfeld trajectories
	Trap frequency control

	Concluding remarks
	Bibliography
	Cooling
	Doppler cooling
	Bound atoms
	Raman sideband cooling
	Cooling atoms in optical dipole traps

	Dressed atom derivation of the dipole force
	Derivation
	Dipole force heating

	Trapping single atoms
	Numerical time evolution methods
	Split-step method
	Lanczos method

	Animations
	Linear transport in a harmonic potential
	Integer harmonic oscillation period
	Half-integer harmonic oscillation period

	Linear transport in 938 nm tweezer
	Integer harmonic oscillation period
	Half-integer harmonic oscillation period

	Transport with minimum-jerk trajectory in 938 nm tweezer
	Initial probability maximum

	Transport with Lewis-Riesenfeld trajectories in 938 nm tweezer
	Long transport times
	Short transport times

	Tweezer merging
	Effective potentials
	Atomic behaviour


	Tabulated results
	One tweezer transport
	Tweezer merging

	Supplementary merging results
	Uncompensated trajectory results
	Minimum-jerk trajectory
	Rigid Lewis-Riesenfeld trajectories
	Non-rigid Lewis-Riesenfeld trajectories

	Frequency control with smaller timestep
	Linear trajectory

	Simulation code
	QuantumSimulation
	UnitfulAtomicHarmonic
	HarmonicTrapTrajectories


